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Abstract We studied the percolation process in a system
consisting of long flexible polymer chains and solvent
molecules. The polymer chains were approximated by
linear sequences of beads on a two-dimensional triangular
lattice. The system was athermal and the excluded volume
was the only potential. The properties of the model system
across the entire range of polymer concentrations were
determined by Monte Carlo simulations employing a
cooperative motion algorithm (CMA). The scaling behavior
and the structure of the percolation clusters are presented
and discussed.
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Introduction

Percolation theory is usually applied to critical phenomena,
disordered systems, porous media and alloys [1]. In the
process of percolation, a portion of space with occupied and
unoccupied sites is considered. When a cluster of the
occupied sites expands sufficiently to approximately fill the
portion of space (i.e., the cluster spans from one side of the
portion of space to the opposite side), percolation occurs.
Percolation phenomena have been extensively studied
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theoretically, but despite this, there are still many issues
with percolation that are far from being understood [1].
Theoretical treatments of the percolation process have
mostly been performed by applying the random sequential
adsorption (RSA) technique [2—8]. In this method, objects
(molecules) are randomly deposited onto a substrate. This
adsorption is irreversible and the molecules cannot pass
through previously deposited molecules (leading to an
“excluded volume”). Percolation and jamming thresholds
can be determined for systems that are studied in this way.
The objects that have been most commonly studied using
the RSA method so far have been stiff rods (needles), but
some results, especially the scaling properties of the
thresholds mentioned above, are still contradictory, and
thus require further investigation [4—7, 9]. RSA studies of
other large objects (squares, ellipses) show that percolation
depends strongly on the shape and size of the objects [10].
The adsorption of polymer chains onto solid surfaces has
also been realized using the RSA procedure. The percola-
tion and jamming of short flexible linear chains onto a
square lattice were studied by Becklehimer and Pandey, and
these chains were constructed as self-avoiding walks [11,
12]. The adsorption of semi-flexible chains via RSA was
recently investigated by Kondrat [13]. His results suggest
that there is a certain temperature at which the percolation
threshold is minimized (the shape of the chain changes with
increased interactions; i.e., with the temperature). Another
study was recently carried out by Sikorski et al. where the
RSA method was used to investigate the macromolecular
architectures of some stiff and flexible chains [7]. In that
work, it was shown that the percolation threshold does not
depend on the needle length (with the exception of very
short needles). The other method that has been used to
study polymer adsorption is computer simulation, which
utilizes three-dimensional polymer-chain models [14—16].
These studies have mainly focused on the distribution of
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polymer segments and the behavior of structural elements
such as trains, loops and tails. Stiff and flexible particles
have been studied by means of geometrical excluded
volume considerations [17, 18], and using macromolecular
integral equation theory combined with the Ornstein—
Zerike equation [19, 20].

Our recent study employed the cooperative motion
algorithm (CMA) algorithm for two-dimensional lattice
polymer systems [21]. It appeared that the percolation
threshold did not simply scale with the local chain density
as N/<S”>(where N is the chain length and S is the radius of
gyration); rather, it was possible to distinguish different
regimes with different scalings. These regimes occur due to
rapid changes in polymer structural properties and thus with
the changes in the fractal dimension of the chains. This
behavior differs from that predicted by De Gennes, in
which the percolation threshold always depends linearly on
the local density [10] (De Gennes considered the polymer
concentration ¢* associated with the transition between the
dilute and semidilute regimes, when the chains start to
come into contact; the concentration ¢* corresponds to the
percolation threshold).

In this work, we studied systems containing long,
flexible homopolymer chains and explicit solvent. These
solvent molecules were of the same size as polymer beads.
The presence of solvent molecules makes it difficult to
investigate such a system with RSA, so, thus far,
percolation in systems of polymers with solvent molecules
has been studied using a method where the polymers are
built up through random walks [22—25]. In order to sample
the conformational space efficiently, we applied a Monte
Carlo method with a cooperative motion algorithm. The
method used in this study is not capable of studying the
jamming threshold (i.e., the highest possible concentration
of two-dimensional objects on the surface). As the
dependence of the percolation threshold on the chain length
and critical exponents has already been determined [21], we
studied and described the structure of the system near the
percolation threshold and across a wide range of polymer
concentrations. The properties of percolating clusters were
also determined.

The model and the method used

A coarse-grained chain representation was used in order to
study the more general properties of macromolecular
systems. Therefore, polymer chains were represented as
linear sequences of identical beads. Restricting the chain
positions to those in a quasicrystalline lattice was the next
approximation we used. We used a two-dimensional
triangular lattice with a coordination number of 6; i.c.,
every monomer had six nearest neighbors. Bond lengths
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were equal to unity. Each lattice site was occupied by a
single molecular element (a chain bead or solvent
molecule), and no empty lattice sites were left. It was
assumed that the various interactions (polymer—polymer,
solvent—solvent and polymer—solvent) that occurred in the
system were identical. Thus, the system was considered to
be athermal; only the interactions in the excluded volume
between solvent molecules and polymer segments were
considered. The system under consideration was placed into
a two-dimensional Monte Carlo box with periodic bound-
ary conditions in all directions.

We studied the percolation process of long, flexible macro-
molecules by means of Monte Carlo simulations using a
method that can work across the entire range of polymer
concentrations. The cooperative motion algorithm (CMA) was
employed in order to generate a series of independent
configurations of the system. In this method, cooperative
movements consisting of rearrangements that satisfy local
continuity of the simulated system are used. A fragment of one
chain can move only if neighboring segments of the same
polymer, a different polymer, or solvent molecules move
simultaneously. This can be realized through local motions
consisting of displacements of a certain number of molecular
elements along closed loops so that each element replaces one
of'its neighbors in such a way that the sum of displacements of
the elements taking part in the rearrangement is zero (the
continuity condition). During these rearrangements, the model
chains undergo conformational transformations that preserve
their lengths. Quantities that characterize the structure of the
system were calculated between cooperative rearrangement
steps. A time unit corresponded to the number of simulations
steps after which one attempt to move each bead was made on
average. A detailed description of this algorithm and a
discussion on its applicability are provided elsewhere [26—29].

At the beginning of the simulations, the polymer chains
were initially fully extended in the x direction and folded if
necessary. The system was then equilibrated using the
CMA algorithm. The equilibration of the system was
monitored by observing several parameters describing
structure and autocorrelation functions (radius of gyration
and its principal components). The equilibrated systems
obtained in this way were used as starting points in
production runs where the trajectories of the positions of
the chains were collected for the purpose of analysis.

Results and discussion

The simulations were carried out for chains consisting of
N=8, 16, 32, 64, 128 and 256 beads. The size of the Monte
Carlo box was changed and the simulations were performed
for L=32, 64, 128, 512 and 1024. The concentration ¢ of
the polymer in the system was defined as the ratio of the
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number of sites occupied by the polymer beads to the total
number of lattice sites in the simulation box:

n-N
7 (1)

where 7 is the number of chains in the system (for a system
that only contains chains of equal length). The concentra-
tion of solvent in the system is therefore 1 — ¢.

Before we give the properties of clusters formed in
percolated systems, we will show the structure of the polymer
chains. This can be also treated as a test of the model and the
method. The size of the polymer chain is usually described via
the mean squared radius of gyration<S>>:

(%)= 2 (=), @

where r; is the coordinate of the ith polymer bead, r.,, is the
coordinate of the chain’s center of mass, and the average <...
> was taken over all chain conformations generated. The
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Fig. 1 a—b The mean squared radius of gyration per bead<S>>/N (a)
and the asphericity factor & (b) as functions of the polymer
concentration ¢

statistical error in this parameter was below 3% in all cases.
The variations in chain size with the concentration of
polymer beads are presented in a semilogarithmic plot in
Fig. 1a. The size of the short chains (V=8 and 16) does not
change significantly, because the number of conformations is
rather limited here, and the presence of other chains cannot
change this. For longer chains, the chain size decreases when
the polymer concentration increases due to the presence of
other chains. For polymer concentrations above a certain
critical value ¢*, the scaling theory of De Gennes predicts
that<$®>scales as ¢ ' [10]. Simulation results presented in
Fig. la show that this law is not obeyed for short chains
(mainly because of the lattice approximation), while for
longer chains with ¢>0.3 it works rather well. In two-
dimensional systems there is no interpenetration of polymer
chains, but quasi-penetration of entire domains is possible
with longer macromolecules [30, 31].

The instantaneous shape of a polymer chain can be deter-
mined in the following way. One can define a gyration tensor

Sy (3)

that is built from the following elements:
N
Sxx = Z (xcm - xi)za

i=1

N
Sxy = S}vc = Z (xcm _xl') ! (ycm _yi)7 (4)

i=1

N
Syy - Z (ycm _yi)2
i=1

The diagonalization of the tensor § gives us eigenvalues
L* and L,?, which correspond to the two main axes of the
equivalent ellipse [32]. One can describe the instantaneous
shape of the chain using the asphericity factor ¢, defined as

< (12 —12)* >
=) > (s)
< (Li+13)" >

This parameter was designed to take the value O for a
purely spherical shape and 1 for a one-dimensional rod.
The statistical error in this parameter did not exceed 5%.
Figure 1b presents the changes in the asphericity factor as
a function of the polymer concentration ¢. In general,
increasing the polymer concentration causes the aspher-
icity to decrease, because elongated conformations are
suppressed under such a condition (the decrease in chain
size can be seen in Fig. la). The longest chains under
consideration here (N=256) behave differently, because
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Fig. 2 The mean squared radius of gyration<$>>as a function of the
polymer lengthV
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Fig. 3 The exponent 7 as a function of the polymer concentration ¢
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Fig. 4 The asphericity factor ¢ as the function of the polymer lengthV
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Fig. 5 The percolation probability P as a function of the polymer
concentration ¢. The chain lengths are given in the inset

the curve exhibits a minimum at polymer concentrations
between ¢=0.2 and 0.4 (for chains with N=128 there is a
different curve shape in the same concentration range).
The presence of such a minimum can be explained by
microphase separation in these systems [29]. It is
important to note that the percolation thresholds are
located within this density range [21].

The changes in polymer size with chain length are presented
in Fig. 2 for low (9=0.05) and high (¢=1) polymer
concentrations. The mean size of a single macromolecule
scales as N7, and the exponent « changes from 1.54+0.05 to
1.02+0.02 when the concentration of polymer is increased
from 0.05 to 1. This behavior is in good agreement with
generally accepted values for two-dimensional polymeric
systems, where theory predicts y=3/2 and 1, respectively
[10]. Figure 3 presents the dependence of the exponent y on ¢
across the entire density range. The changes are monotonous
and the influence of the density on the exponent is

perca
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Fig. 6 The number of beads in the percolation cluster as a function of
the size of the system. The chain lengths and the polymer densities are
given in the inset
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Fig. 7 The size of the percolation cluster as a function of the size of
the system. The chain lengths and the polymer densities are given in
the inset

considerably stronger for ¢<0.6. The dependence of chain
asphericity on chain length is presented in Fig. 4 for some
polymer densities. The chain asymmetry increases with the
chain length, and the shape of longer polymers (N>128)
remains almost constant for densities ¢>0.5 and
& approaches a constant value of 0.522. The polymer shape
only depends on chain length for short polymers, but chain
asymmetry grows rapidly in this region. Greatly increasing
the polymer concentration (from ¢=0.05 to p=1) makes the
chains more spherical, although these changes in shape are
rather small, thus confirming previous findings [31].

E

Fa

The structure of the entire polymer system at the
percolation threshold is the next issue under consider-
ation. The percolation threshold was calculated from the
behavior of the percolation probability. This probability
was simply the ratio of the number of states in which
percolation occurred to the total number of generated
configurations. Figure 5 presents examples of the perco-
lation probability as a function of the polymer density. The
percolation threshold ¢, can be determined by fitting the
following function [9]:

Plo)=1-(1+ewp(2=)) 7, (6)

where P is the percolation probability and a is another
constant that determines the slope of P(¢). As a—0, this
function reduces to a step function. Equation 6 was used as
dP/dg was expected to behave like the Gaussian distribution
[33]. A finite-size scaling analysis was then performed. The
extrapolation of the threshold to the thermodynamic limit
was achieved by fitting to the scaling relation

|ep(L) = cp(00)] ~ L7V, (7)

where ¢,(L) and cy(0) are percolation thresholds for the
Monte Carlo box LxL and for the infinite system,
respectively, and v is a critical exponent (theoretical
predictions indicate that v=4/3) [1, 21, 33]. There is also
an alternative method, where the percolation threshold is
estimated as the intersection of the two probability curves for
two box sizes [34]. The percolation threshold of the solvent

Fig. 8 a—b Snapshots of a percolated system at a concentration just above the percolation threshold. The percolation clusters are shown in red

while the remaining chains are shown in blue. a N=8, b N=256
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can be determined in a similar way from the solvent
percolation probability P, as a function of the solvent
concentration 1 — ¢. The percolation threshold decreases
sharply with increasing chain length. The percolation
threshold appeared to decrease with increasing chain length,
from ¢,=0.466 (for N=3) to ¢,=0.188 (for N=256) [21].
However, in general, the percolation threshold was found to
depend strongly on the local chain structure. This threshold
is a simple function of the polymer local density N/<S>>,and
it scales as (N/<S>>)". Two scaling regimes were found:
b=0.67 for longer chains and »=0.27 for shorter chains. This
result is different from De Gennes’ predictions, where h=1
[10, 21]. The percolation of polymer chains (and solvent
molecules) belongs to the same universality class as the
ordinary percolation problem [35].

Figure 6 presents the mean number of polymer beads
in the percolation cluster as a function of size of the
system at the percolation threshold. The number of beads
Nperco scales with the size of the box as LP where the
scaling exponent D is close to 1.6 in all cases under
consideration: D=1.62+0.02 for N=8 and ¢=0.44, and D
=1.63+£0.04 for N=256 and ¢=0.19. This exponent is a
fractal dimension of the percolating cluster and its value is
lower than theoretical predictions for single beads (points),
where D=91/48~1.90 [1]. Computer simulation of short
chains on a square lattice resulted in D values of between
1.836 and 1.922 [33]. The size of the percolation cluster
can be expressed via the mean squared radius of gyration
<S2>perco. The dependence of the percolation cluster size
on the size of the system is presented in Fig. 7. Scaling
also occurs in this case: the size of the percolation cluster
depends on the size of the system as L? where the scaling
exponent d=1.69+0.01 for N=8 and ¢=0.44, and d=1.70
+0.01 for N=256 and ¢=0.19. Simulations of short chains
(consisting of up to 10 segments) on a square lattice gave
slightly higher values for this exponent—between 1.71
and 1.79 [33]—while theoretical predictions for single
beads (points) described this exponent as being the ratio of
two critical exponents v and v, and thus d=~/v=43/18:4/
3=1.79 [1].

In Fig. 8, we present examples of a percolated
polymer system just above the percolation threshold: at
©=0.44 for short chains (N=8) and at ¢=0.19 for long
chains (N=256). One can see that for long chains
percolation can be achieved through extended conforma-
tions (at low polymer density the chains can be extended,
as they only rarely interact), and thus the macromolecules
are anisotropic. Large areas consisting of pure solvent are
also visible. Short chains are observed at considerably
higher densities and thus are rather more compact and
isotropic.

This work focused on studying the properties of a
two-dimensional macromolecular system across a whole
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range of polymer concentrations. It was previously
shown that the random sequential adsorption technique
is not efficient for long, flexible chains [7, 21].
Therefore, an alternate calculation method was employed.
A coarse-grained model of a polymer solution was used,
and the mean properties of the system were determined via
the cooperative motion algorithm. It was shown that the
average polymer size<S*>obeys De Gennes’ prediction
that <§>~¢ ! for longer chains and at moderate and high
polymer concentrations ¢. The scaling of the macromo-
lecular size was exactly as predicted previously by
theories and simulations; i.e., between 3/2 and 1. The
dependence of the chain asphericity factor on the polymer
concentration suggests that microphase separation occurs
for longer chains, although all of the systems under
consideration were athermal. The values of the critical
exponents appeared to be slightly lower than predicted by
small-object theory.
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